In Situ Time-Resolved Diffraction with High Energy X-rays from Metal Oxides: Rietveld Refinements

Jonathan Hanson, Xianqin Wang and Jose Rodriguez, Chemistry, BNL, Peter Lee, APS, ANL Peter Chupas, Materials Science, ANL

Outline

- Motivation: Structural models of intermediates during catalytic processes
- Technique: In situ Time-resolved XRD
- Applications
 - NiO reduction
 - CuO/Cu₂O/Cu reduction
 - Ceria reduction

Setup for In situ Data Collection

Mar345 Image Plate Detector / Goniometer

Flow Cell

T: 25-950°C P: .001- 120 atm Time: Current=2min/Future 0.1sec

Advantages of Diffraction with High Energy (80-100Kev)

Low absorption:

Corrections negligible
Bulk vs. surface properties
More penetration of *in situ* cell

High Q resolution

Improved over-determination
Reduce U / occupancy correlation

Sharp lines from standard LaB₆

Kinetics NiO Reduction From TR XRD

Isothermal TR-XRD at 280°C

 $NiO + H_2 \rightarrow Ni + H_2O$

111 intensity during reduction at four temperatures.

J. Am. Chem. Soc. **124,**346-354 (2002)

DF Calculations H₂ Interactions with NiO

H₂ on smooth NiO Weak adsorption 16Kcal/mol barrier Endothermic

H₂ on NiO defect
Strong adsorption
8 Kcal/mol barrier
Exothermic

Challenge

- Can refinement of high Q powder data give information about oxygen vacancy and interstitial oxygen formation?
- Can structural information can be obtained?

Ramp NiO in 5%H₂/He

- 1.Fraction NiO decreases faster than oxygen occupancy
- 2. Occupancies of oxygen are constant, but slightly low until NiO fraction is less than 0.5

Ramp NiO in 5%H₂/He

Cell continues to expand until NiO fraction less than 0.4 and then it contracts slightly

3 Oxides of Copper related to tetragonal cell show common features/O changes

Time resolved diffraction pattern

No diffraction from Intermediate phases Is there any information In the TR intensity data of CuO phase?

Can you refine O occupancies when small weight fraction?

Current approach fails at weight fraction < 0.46

Observed and Calculated Effect of Oxygen Vacancies on Cell Dimensions

Kim, J, et al J. Am. Chem. Soc. (2003) **125**, 10694

Gsas refinement of initial CuO

Thermal	О осс	R(F ²)	χ^2
Aniso Cu	0.820(6)	0.029	0.37
aniso Cu	1.0(fix)	0.036	0.62
Iso Cu	0.828(6)	0.034	0.50
Iso Cu	1.0(fix)	0.039	0.84

O Occupancy significant, but not full Cu anisotropic motion significant

Cu disorder High Q data important to resolve peaks

Cu on 1bar

Cu .08A from 1bar

$CuO+H_2 \rightarrow Cu + H_2O$

- Oxygen occupancy change in CuO small until material more than 50% gone
- CuO Cell dimension changes
 - Consistent with H imbedding initially
 - Oxygen vacancies at end
- High Q data reveals Cu disorder

Water Gas Shift Reaction:

Cu₂O diffraction line observed during catalytic formation of CO₂

Formation of Cu₂O intermediate.

Isothermal reduction with CO

Equilibrium Cu₂O phase forms at lower flow

High flow

 Meta stable CuO →Cu before Cu₂O forms in high flow

Refinement shows possible disordered Oxygen in Cu₂O Wang X, et al J Phys. Chem. (in press)

CeO₂

- Important "Oxygen" modulator in catalyst
- Reversible H₂ or CO reduction (<1000C) results in cell expansion but no phase transition.

Previous Experiments Binding H₂ or CO

Fierro, et al **JSSC** (1987)

Microgravimetric measurement

Activated process

Reduction above 573°K

Ozawa & Long Cat.Today (1999)

In situ X-ray diffraction at 600°C

Reversible "process"

Small cell dimension change

In situ oxidation/reduction of bulk ceria

Cell Expansion In H₂ and CO

Simultaneous gas concentrations and cell dimension changes

- Anomalous cell expansion during heating
- Cell contraction in He
- Cell expansion in CO too

Refinement of Bulk CeO₂ In Situ Data

Conditions	dist(CeO)	Occ (O)	χ^2
25°C Air reference	2.342Å	1.00	0.6
800 °C H ₂ /He	2.409	0.89	0.3
800 °C He only	2.368	1.00	0.3
800 °C CO/He	2.410	0.93	2.7

On reduction at 800 °C

Distance of CeO increases 0.04Å in H₂/CO

Occupancy of O changes 0.1 in "reduced" CeO_x

Models in Cavity

 H_2 Stable minima in DFT Density in $\Delta \rho$ map

Egami Frenkel Defect DFT move back to normal site Density in $\Delta \rho$ map

Electron Density in Central Cavity

H₂/He Flow 800 C

He only Flow 800°C

Neutron diffraction from bulk ceria in H₂ at 400C

Rwp= .16 RFsq= .13 a=5.4327 occ=.956

Neutron diffraction from bulk ceria in H₂ at 400C

PRwp=0.14 RFsq=0.15 a =5.4711occ=.925

Vacancies in Ca doped ceria

Ce:Ca ratio	Lattice Constant	O Occupancy in lattice
1:0	5.420	1.02
9:1	5.416	0.94
8:2	5.416	0.94
2:1	5.394	0.86*

- •0.86 implies $Ce_{0.66}Ca_{0.33}O_{1.72}$ instead of ideal $Ce_{0.66}Ca_{0.33}O_{2}$
- •Rodriguez, et al. J. Phys. Chem. (2003) 119, 5659-5669

Conclusions

- In situ time resolved powder diffraction provides:
 - Useful information of intermediate phases
 - Faster detector would help
 - Structural information during transformation
 - Complexity of refinement restricts certainty of model
 - Useful trends of transformation can be obtained

Acknowledgements

Clare Grey Chemistry, SUNY-Stony Brook

Jae Kim Chemistry, BNL

M. Fernandez-Garcia CSIC, Madrid, Spain

Simon Billinge Michigan State University

Xiangyun Qiu

S. Smart SEPD IPNS ANL

DOE(Div. of Materials and Chemical Sciences) NSLS and APS

Chem. Dept: DOE contract DE-AC02-98CH10886